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Introduction
Data center hardware infrastructure is undergoing an unprecedented period of expansion, in large 
part driven by the rapidly growing computational demands of artificial intelligence (AI). Large and 
complex compute clusters consisting of tens of thousands of processors are today required to 
meet the needs of generative AI. Due to increasing AI model complexity and the growing use of 
AI in end-user applications, the demands on data center infrastructure are accelerating. The 
growth in infrastructure needed for AI is driving a very rapid growth in data center power 
consumption. Data centers are currently estimated to account for approximately 1% of global 
energy consumption and CO2 emissions1. As cloud service providers deploy additional and more 
powerful compute clusters to meet the growing needs of AI applications, emissions and energy 
consumption are also expected to accelerate, exceeding a 7% CAGR.

Data center infrastructure largely consists of servers and 
networks. Servers primarily consist of memory, processor, and 
network interface chips and run software to store, compute, and 
analyze data. Networks provide high-bandwidth links that 
distribute data between servers and consist of multiple tiers of 
electrical switches interconnected by optical transceivers. 

In existing cloud data center architectures, networks are 
responsible for approximately 14% of total power consumption. 
The emergence of generative AI models, particularly those relying 
on large language models (LLMs), has led to an exponential rise in 
both GPU-based server clusters and the switches and 
transceivers needed for data communications within these 
clusters given the compute and network intensity of AI compared 

with other data center applications. The networking needs of AI 
training has a significant impact on power consumption, and 
results in AI training networks exceeding 20% of total power 
consumption. As AI cluster sizes continue to grow, the need for 
more efficient network solutions becomes even more critical to 
improve scalability and environmental sustainability.

This paper considers the network power consumption of large-
scale AI training implementations and the impact of several 
emerging approaches to increase power efficiency. This paper 
highlights the potential of certain key optical innovations to reduce 
network power consumption by up to 80%, saving more than  
17 megawatts of power, and reducing the carbon footprint by the 
equivalent of 10,000 metric tons of CO2 per AI training cycle.
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AI Training Networks 
To tackle the demands of growing AI training workloads, AI 
training networks increase computational power by connecting 
numerous compute elements together, including GPUs and TPUs, 
to enable them to function as a unified supercomputer system. 
The computational power needed for these large workloads is 
measured in floating-point operations (FLOPs). The total number 
of FLOPs is determined by three factors: the total number of 
parameters (the model’s weights), the total number of tokens 
(training data), and the number of FLOPs required per parameter 
and per token. The needed FLOPs ultimately dictates the number 
of processors and accelerators (e.g. GPUs, TPUs, NPUs), and the 
network capabilities required to support the training cluster.

Our analysis begins by examining the AI data center requirements 
to train one of the largest AI language models to date, OpenAI’s 
GPT-44, and how these requirements change in moving to GPT-5. 
While numerous AI models exist, these were chosen due to the 
publicly available data about them. With the network 
requirements modeled, we compare estimates of network power 
consumption in moving from GPT-4 to GPT-5, where a significant 
increase in estimated power consumption and environmental 
impact is identified.

Our analysis concludes by modeling the use of more energy-
efficient optical (EEO) interfaces and utilizing optical circuit 
switches (OCSs) to replace certain electrical packet switches 
(EPSs) within the network to significantly reduce the estimated 
power consumption and environmental impact of GPT-5. 

Open AI’s GPT-4 was trained over 100 days using 25,000 A100 
NVIDIA GPUs. The model contains 1.8 trillion parameters and was 
trained on a dataset of 13 trillion tokens5. The training process 
for GPT-4 required an estimated 21.5 million exaFLOPs5-6 or  

~2.5 exaFLOPs per second. For comparison, Frontier, the world’s 
fastest supercomputer according to the TOP500 list7, can only 
achieve 1.194 exaFLOPs per second. 

For GPT-4 training, a non-blocking, multistage network (also 
known as a folded CLOS or fat tree network) was modeled using 
EPSs with multiple switch layers8 to support 25,000 GPUs as 
depicted in Figure 1. This network utilized 100GPU superpods 
and 25.6 Tbps electrical packet switches interconnected using 
400 Gbps transceivers. To achieve all-to-all connectivity across 
the network, individual switch radix was insufficient and 
necessitated the use of multiple switches, as shown in Figure 1.

Figure 1. GPT-4 network diagram with 25,000 GPUs and 25.6 Tbps EPS
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GPT-5 is expected to consist of 17.5 trillion parameters, a tenfold 
increase over GPT-49. This mirrors the scaling factor between GPT-3 
and GPT-4. For modeling, we assume GPT-5 training will use the 
same 13 trillion dataset and 100-day training period as GPT-410. 
Consequently, the compute requirement for GPT-5 is estimated to be 
an order of magnitude larger than GPT-4, reaching 215 million total 
exaFLOPs or approximately 25 exaFLOPs per second. This translates 
to a training system requiring more than 20 times the computing 
power of the world’s current fastest supercomputer. 

To estimate the number of GPUs needed for GPT-5 training, we 
assume next-generation hardware with 2.5 times the performance of 
the GPUs used in GPT-4 training. Under these assumptions, GPT-5 
training would require an estimated 100,000 GPUs. The fat tree 
network model shown Figure 1 is adapted to support 100,000 GPUs 
as shown in Figure 2. The adapted model incorporates next-
generation electrical packet switches, each with a 51.2 Tbps capacity, 
interconnected by 800 Gbps transceivers. Where necessary, 
multiples of these switches are combined to achieve a higher radix. 
Figures 3a and 3b depict the switch and transceiver counts for 
GPT-4 and GPT-5 training, respectively.

Figure 2. GPT-5 network diagram with 100,000 GPUs and 51.2 Tbps EPS
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Figure 3c and 3d show estimates of the total power consumption 
(including GPUs) and network-only power consumption for GPT-4 
and GPT-5 training systems. To put this in perspective, GPT-5 is 
expected to consume a staggering 122 MW, exceeding 10% of the 

Hoover Dam’s 1,076 MW generation capacity11. This stark 
comparison highlights the critical need for more energy efficient 
approaches to support the next generation of generative AI 
models. 
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Figure 3. GPT-4 and GPT-5 power and component comparison a) number of EPS needed for each AI model training, 
b) number of transceivers needed for each AI model training, c) estimated network power comparison between AI 

models, d) estimated total power comparison between AI models over a single training cycle
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Energy-Efficient Networks  
In this paper, we focus on two promising areas of innovation that 
could reduce networking-related power consumption: the 
utilization of EEO interfaces12 and OCSs13 in AI clusters. EEO 
interfaces can reduce power consumption by eliminating some of 
the power intensive DSP and/or retiming electronics used in the 
server-to-switch and switch-to-switch data links. EEO interfaces 
under development can take various forms, including pluggable 
transceivers with fewer or no DSPs and/or retimers, or co-
packaged optics (CPO) that place optical transceiver functionality 
in very close proximity to the switch silicon chip. For modeling 
purposes, we assume EEO interfaces result in an average energy 
efficiency improvement of approximately 50% for equivalent 
reach and data rate. 

Our modeling shows that incorporating EEO transceivers into the 
GPT-5 network model can achieve a power savings of 37%, 
translating to an 8 MW reduction in network power consumption. 
This saving is significant, nearly double the total network power 
required for GPT-4 training (Figure 4). 

Figure 4.  Network power consumption comparison 
of energy-efficient networks

Utilizing OCS-based high-radix optical switches to replace EPS 
core network fabric layers allows the flattening of the multitier 
EPS architecture into a single OCS tier (Figure 5). An OCS can be 
implemented with a range of underlying technologies, but the 
most common relies on low-power, electrostatically actuated 
MEMS mirror technology to direct light from input to output. 
While this new network architecture requires new software and 
hardware orchestration, it eliminates the power consumption and 
latency associated with the large number of electrical switches. 
EPSs can still be used with short-reach optical interconnects to 
connect to various network layers. An OCS-based network might 
require interconnects with longer reach (e.g. FR/LR) optical 
transceivers to overcome optical switch losses and provide 
additional reach for connections across the network. This need 
for longer reach transceiver results in an estimated 20% 
additional energy consumption per transceiver compared with 
shorter reach transceivers, but is much more than offset by the 
power savings of utilizing OCSs. For a network like GPT-5’s, a 
high-radix OCS can connect all GPU superpods within a single 
switch layer. A unique advantage of utilizing an OCS-based 
network layer is the ability to expand to larger clusters without 
altering the network fabric, unlike EPSs which have pre-defined 
pluggable ports and limited aggregate traffic bandwidth. OCS 
connections are fully optically transparent and lack the line rate 
limitations of an EPS-based network. 

Moving to an OCS-based network in the GPT-5 example achieves 
a significant power savings exceeding 14 MW or 65% of total 
network power, as shown in Figure 4. Additional power savings 
could be realized by incorporating EEO transceivers. Compared to 
the baseline network with electrical packet switching, an 
architecture that combines the benefits of both OCS and EEO 
technologies could deliver nearly 80% network power savings, 
translating to a reduction of 17 MW. Utilizing both OCS and EEO, 
the network power consumption of a GPT-5 system could be 
comparable to that of GPT-4, while providing an AI training 
capability an order of magnitude larger. 
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Figure 5. GPT-5 network fabric reconfigured with OCS
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The modeled power savings translates to significant reductions in 
environmental impact. To estimate the CO2 equivalent (CO2e) savings 
from these power reductions, we used a representative carbon 
intensity metric of 0.24 kg/KWhr, which aligns with that of the Azure 
West hyperscale data center14. Based on this assumption, data center 
CO2e savings would exceed 5,000 and 10,000 metric tons for GPT-5 
implementations with EEO only and EEO combined with OCS, 
respectively (Figure 6). To put this into context, the combined CO2e 
savings are equivalent to eliminating the emissions from over 2,000 
cars in a single year15. 
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Figure 6. CO2 emission savings with energy efficient networks

Given the potential of OCS based networks and EEO interfaces to 
significantly reduce the network power consumption of large AI 
clusters, we believe the data center industry needs to accelerate 
efforts into the development and deployment of these 
technologies to sustainably keep pace with the growing demands 
of AI workloads. This also requires close collaboration between 
technology suppliers and hyperscale cloud operators to integrate 
hardware innovations with software orchestration. 

The energy and CO2 emissions savings that could be achieved 
with these advancements are substantial. There are also 
opportunities for even greater efficiency, as the improved 
latencies offered by combined OCS and EEO networks can lead to 
better utilization of compute resources and therefore less 
hardware to achieve a given level of compute performance. 
Furthermore, deploying the OCS layer within superpods can 
further reduce power consumption and increase dynamic access 
to memory. As new AI applications emerge and grow, the benefits 
of the emerging optical technologies discussed in this paper are 
even more important to scale data center infrastructure 
sustainably. 
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